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BIFURCATION NEAR FAMILIES OF SOLUTIONS

Jack K. Hale

Summary: Many investigations in bifurcation theory are concerned

with the following problem. If M(0,0) = 0 and 09M(0,0)/9x has
a nontrivial null space, find all solutions of the equation

M(x,X) = 0

for (x,A) in a neighberhood of (0,0) & X X A,

If dim A = 1; that is, there is only one parameter involved
then the existence of more than one solution in a neighborhood of
zero can be proved by making assumptions only about §M(0,0)/3x and
9M(0,0)/9%x3A . However, if dim A > 2, then the problem is much more
difficult and more detailed information is needed about the function
M. A careful examination of the existing literature for dim A > 2
reveals that the additional conditions imposed on M imply, in

particular, that the solution x = 0 of the equation
M(x,0) =0 (1.2}
is isolated (see, for example, the papers on catastrophe theory).

These hypotheses eliminate the possibility that Equation (l.2) has

a family of solutions containing x = 0. Such a situation occurs,

for example, for M(x,)A) = Ax + N(x,A), where A is linear with a
nontrivial null space and N(x,0) = 0 for all x. There also are
interesting applications where Equation (1.2) is nonlinear and there
exists a family of solutions. For example, Eguation (1.2) could be
an autonomous ordinary differential equation with a nonconstant

periodic orbit of period 21 with the family of solutions being




Summary (continued)

" obtained by a phase shift. When the differential equation in the
latter situation is a Hamiltonian system, the parameters (Al,xz)
could correspond to a small damping term and a small forcing term of
period 2II. To the author:s knowledge, the first complete investiga-

tions of special problems of each of these latter types are contained

in papers by Hale, Taboas and Rodrigues.
It is the purpose of this paper to begin the investigation of
the abstract problem for Equation (1.1l), especially to extend the

results in the paper by Hale and Taboas.
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BIFURCATION NEAR FAM'LIES OF SOLUTIONS

Jack K. llale
Lefschetz Center for Dvnamical Systems
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912/USA

§1l. Introduction and statement of problem.

Suppose X,Z,A are Banach spaces, M: X x A - Z 1is continuous
together with its Frechet derivatives up through order two. Many
investigations in bifurcation theory are concerned with the following
problem. TIf M(0,0) = 0 and 3M(0,0)/0x has a nontrivial null

space, find all solutions of the equation
M(x,A) = 0 (1.1)

for  (x.,X) in a nerghberhoed ief « (0 00 & X > A,

If dim A = 1; that is, there is only onc paramecter involved,
then the existence of more than one solution in a neighborhcod of
zero can be proved by making assumptions only about 3M(0,0)/9x and
oM (0,0) /5x3Ax. However, if dim A > 2, then the problem is much more
difficult and more detailed information is needed about the function
M. A careful examination of the existing literature for dim A > 2
reveals that the additional conditions imposed on M imply, in

particular, that the solution x = 0 of the equation
M(x,0) = 0 (1.2)

is isolated (see, for example, (1], [2] and the papers on catastrophe
theory in [3]). These hypotheses eliminate the possibility that
Ecquation (1.2) has a family of solutions containing x = 0. Such a
situation occurs, for example, for M(x,A) = AX + N(x,A), where A

is linear with a nontrivial null space and Nix,0) = 0 for all x.
There also are interesting applications where BEquation (l.2) is non-
linear and there exists a family of solutions. For example,

Eguation (1.2) could be an autonomous ordinary differential eqguation

‘'with a nonconstant periodic orbit of period 2l with the family of

solutions being obtained by a phase shift. When the differential

equation in the latter situation is a Hamiltonian system, the para-

meters (Xl,lﬁ) could correspond to a small damping term and a small

forcing term of period 2Jl. To the author's knowledge, the first

complete investigations of special problems of each of thesc latter
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_types are contained in (4], (5],

‘It is the purpose of this paper to begin the investigation of the
abstract problem for Equation (l.1), especially to extend the results
in ' [S): More specifically, suppose Lquation (l1.2) has a one parameter
family of solutions x = p(t), 0 < t < 1, p(0) =.p(l), which is con-
tinuous together with derivatives up through order two with p'(t) =’
dp(t)/dt # 0, p'(0) = p*(1), p"(0) = p'{l). Boundary conditions on p
‘are imposed only to avoid a special discussion at the end points of
Ethe curve defined by p. . Since M(p(t),.0) =0 Ffor all ¢, it follows
that p'(t) is a nonzero element of the null space N(A(L)) of the
ilinear operator

A(t) = M(p(t),0)/3x [ £53)

for 0 £ E <l
If T = {p(t), 0 < t < 1} C X, the problem is to characterize the
solutions of Equation (1.1l) in a neighborhood of [I' x {0} C X x A
Suppose @(A(t)) is the range of A(t). For the case in which
dim N(A(t)) = 1 = codim #(A(t)), and A = mz, we give a solution to
this problem under certain hypotheses on aM(p(t),0)/3). One important
implication of the results can easily be stated. Suppose Yy C A = R2
is a continuous curve, 0 &€ vy, 0 € Cl vy, the closure of 1y, and suppose
x(A) 1is a solution of system (l1.1) defined and continuous for X G Y.
I1f the set x(y) C X remains in a sufficiently small neighborhood of
' and the set x(y) is precompact, then all limit points of x{A)
as )\ €y approaches zero bhelong to I, but x(\) has a limit as
X = 0 -if and enly ik cot—l(Al/Az) approaches a constant as A Yy
approaches zero.

§2. Statement and implications of results.

For any Banach spaces X,2, we let ck(x,z) be the linear space
of all functions from X to 2 which are continuous together with
all derivatives up through order k. If no confusion may arise, we
sometimes write Ck for Ck(x,Z). For any finite collection of ele-
ments Gporees sy of a Banach space, we let [ql,...,qk] denote the
linear subspace spanned Qy ApreeerGy: By our boundary condition on
p, we may suppose p C C°(R,X) and is l-periodic, that 1is, periodic
of period 1. Suppose ([p'(t)] = NA(t)) and there is a q € cz(m,Z)
l-periodic, such that [q(t)] ® @(A(t)) = 4. If /4(X) is the
Banach space of bounded linear operators on X, let U (ECE(R,fﬁ(X))
be such that U(t) is a projection onto N(A(t)) and let .
E €EC2(R,£Z(Z)), E(t) a projection onto Finltlily T -~ EfE}] & pro=

jection onto [q(t)]. Also suppose U,E are l-periodic.
2 2 o
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i-periodic, by the relation

aj(t)q(t) = (I—E(t))ﬂﬁ(p(t),O)/Bkj (2.1)
Our first hypothesis on al(t) = (al(t),az(t)) is

(Hl) ot lE) sl or £ e iR,

If glt)y = (az(t),-ul(t)), then B(t) # 0 by Hvpothesis (”1) and
we can let ¢(t) be the angle measured in the counterclockwise direc-
tion which 8(t) makes with the horizontal axis. 4“he function

2 : Sl :
¢ € C"(R,R) and is l-periodic. We impose the following hypotheses

on ¢:

(HZ) The function  ¢'(t) has at most a finite set of zeros
e 1,2,...,n} C [0,1) and ¢"(t*) # 0 for k=1,2,...,n.

(H;) ot # o™, 3 #k, j,k=1,2,...,n.

We now state the main results of the paper together with implica-
tions. The proofs will be given in Section 3. Suppose Y 1s a smooth
curve in Rz Ehrough the origin. If for any q € v, q # (0,0), Ll
denotes a positively oriented normal to L, at q, we say Y is ?
crossed from right to left at q 1if ¥ is crossed by moving along

Bl oy , ;
Lq in the positive direction.

Theorem 2.1. If Hypotheses (nl)-(n3) are satisfied, then there exist

neighborhoods U of T, V of XA = (0,0), and s, > 0, such that, for

each tJ (= {tk, k=1,2,.s.,n}), there corresponds a unique curve
23 ¢ V, tangent to the 1i... a(tj)-A = 0 at gero, _g% N av & o,

each _Zj intersects lines through the origin in at most one nonzero

point, these curves intersect only at (0,0), the number of solutions

of Equation (l.1l) incrcases (or decreases) bv exactlv two as 3% is

¢rossed from right to left if td is a relative minimum (or maximum)

of ¢.

i The curves ¥, c¢an be defined ananoLxAgnllv in the form

A =8Bi(s}, 058 <5 By € CT([0,5,),R s !Lj(s)l =1,

and a(tj)-ﬂj(O) = 0. If t*,L arc the absolute mini-
¢

where

VER ¢85

OI

mum, maximum, respectively, of and

S(V) = (XA €EV: A-8"(s) < 0 < AeBa(s), 0 < s < 54},

where X = sB*(s), A = sf,(s) are the curves correcsponding to e

and t,, then there arc no solutions of Equation (l.1) in U for

X ES(V), at least two in s~ V) = V\S(V) and all soclutions are

dfst;nct in the_;nter;or of S (V)

G,
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L'he curves 2% in Theorem 2.] are called the bifurcation curves.
To see how easy it is Lo obtain th: complete gualitative picture of
the bifurcations near X = 0, let us consider a few special cases. If
¢ (t) has only one maximum at t* and onc minimum at ts, therc are
‘only two bifurcation curves %, %" corresponding to ti,t",
respectively. There are no solutions of Equation (1.1) in U for
A € S(V) and exactly two solutions in s€(v) which are distinct in
the interior of  S5S(V) (see Figure 1l). If there are two maxima and
two minima (there must always be an even number of maxima and minima
by'periodicity), then the situation is depicted in Figure 2. By
changing the function ¢, one can obtain every possible rotation of

these pictures.

3]
.

Figure L. Figure

Another interesting special case 1is "l(t) = -1, t € R. Hypothesis
cot-laz(t) and the

(Hl) is always satisfied, p(t) = (uz(t),l), $(t)

hypotheses (Hl), (“2) are equivalent to

(Hé) The function “é has a most finite set of zcros
Kk

(e, km 1,0,00.,.00 C [0,1) and al(e™) £ 0, k= 1,2,...,m.

Wy eyt # ey, 3 # K 3, k= L,20..00n

Theorem 2.1 for this case is essentially contained in [5]. Since

al(t) = =1, the set §S(V) must contain the AJ-axis and, thus, the

bifurcation diagram is a rotated version of the ones in Figures 1 and 2.
The following result gives some information about the possible be-

havior of the solutions of Equation (l1.1) as A = 0.
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heighborhoods given in Theorem 2.1, and supjose v 15 a continuous

. curve defined paramectrically by X, = Al(T), k2 Gl 4 R e D

2 2 S i
and Al(T) + A2(T) = 0 if and only if v = 0. Also, suppese Y C V
and for each point (l}(T),K¢(T” c i there is a sofution %) &U
of Equation (l.1) which is continuous in Tt on the half open interval

fG:2ke . 1F

to
.
o

ey = dxle), B v 1) L% (

is precompact, and

St o O
¢m(Y) =" 1im 1nfT¢0COt (ll(T)/Az(T))
. (2.3
¢y (¥) = lim supT*OCOt-l(ll(T)/iz(T))
then there is an interval I(y) C [0,1] such that &(I(y}) =
(6. (v) oy (¥)] “and
(€1 SN Fy) = {ple), t €1 el

A conseguence of the above result is the following

Corollary 2,1. 'I1If v,x(t) satisfy the conditions of Theorem 2.2, then

a necessary and sufficient condition that x(r) have a limit as T 0
is that cot_l(Al(T)/Az(T)) has a limit ¢0 ash riern@, bl this  Case,
X (] > p(to) where t. € [0,1) is a solution of the equation

...l 0
cot (Al(t)/xz(t)) = ¢0.

The fact that one can obtain solutions which are not continuous in
A at A = 0 is not surprising. Consider the scalar cquation
Alx - AZ =0 2which has the solution x = Kz/ll for Al # 0. Along a
curve y € R, this solution has a limit as X > 0 in y if and only
it Al/Az approaches a limit as A -~ 0 1in Y.

Let us now make a more interesting application to the sccond order

scalar ordinary differential equation

2
S 4 glx) + A his) X = A E(s) = 0 i n )

o
L

ds

where h,f are continuous and l-periodic, ¢ € CZ(R,R), Nelxy) > U e
X ¥ 0. For Al = 12 = 0, the equation

42
_§+gm)=o (2.6)

ds

has a general solution of the form x
where vy(g,a) = ¢(g+l,a) for all (g,a), and (a,0) = (x(0),dx(0)/ds).

Il

p(wla)s + t,a), (a,t) G:Rz,

We suppose Equation (2.6) has a nondegenerate l-periodic orbit; that is,

Ihere is an a, > 0 (= a w(ao) = 1, dm(ao)/da £ 0. (2.7)
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Let 2= {ve R+ R which are con ous amd L=periodacy Cand Loc the

By % %N+ 2, k=B by
_ 20 s
M(x,\) (s) = 9~£%il + g(x(s)) + Alh(s) gxis) At )
ds ds 2

has continuous derivatives

supremum norm on 2. Let X = {y + Z: y
up through order two} and use the usual C norm on - x. 1f we define

then we are in a position to apply the previous results. In fact, if
p(t) (s) = w(w(ao)s + t,ao), then p(t) € X and satisfies M(p(t),0) =
=0, 0 <t <1l. Also, llypothesis (2.7) implies. that dim NAL)) =1 =
M(p(t),0)/0x. TFurthermore, the function

codim L(A(t)), where A(t) = 0
p(t) is a basis for (A(t)) and a complement for H(A(t)). It is

now an obvious calculation to sec that the tunctions wl(t),u,(t) in
(2.1) are given by
1 . 2 (-
o () = =i hilskiplsttlads, 5t = Pl(s+t) f(s)ds. (2.8)
! 0 2 0

EE (al,az) satisfy (Hl)—(n3), then the above results are directly
applicable to the determination of the bifurcation curves for the
l-periodic solutions of Eauation (2.5) which lie in a neighbhorhood of
the periodic orbit T C Rz of Equatien (2.6) defined by

I = {{p(s),dpla)/fds) , @ €& & ki For Jits) =1, U 28 3 1, these re-
A detailed explanation of the
' X R

sults were previously obtained in [5].

manner in which the l-periodic solutions wind onto the cylinder

e s ; .
as X >0 along a curve: v . R is given in [5]. &lso, a reasonable

physical explanation for the discontinuities of the solutions at |

X o= 0 dg given im- [5)%

§3.  Proof of the results.

our objective in this section is to give the cssential elements of
the proofs of the results of Section 2. The notation of that section
will be used without explanation.

By the Implicit Function Theoren and the compactness of T, one %
obtains the following result.
Lemmna 3.1. There is a & > 0 such that the transformation x = (t,v),

X s pit) vy, ¥y €I[I=-U{E)]IX, (3.1)

from a neighborhood of I' to [0,1) x (I-U(t))X is a diffcomorphism
for £t €16:1); lyl < 8.

For the determination of all solutions of Eauation (l.1l) in a
sufficiently small neighborhood of T, Lemma 3.1 implies that it is
sufficient to consider X given by Equation (3.1) and |y| in a

sufficiently small neighborhood of zero. 1f x is a solution of
. oty P S i i Bl i o




~W : . . Equation (l.l) and y is defined I» Laquation (3.1), then y sotis- /
fies the equation

det

0 = Mip(t) + y,X}) "= A(E)y + N(t,y,)) (3.2)

where N(t,y,A) = M(p(t) + y,X) - A(t)y. By the boundary conditions
on p, we may consider this equation for t & R. Decomposing this
equation into its components in E(t)Z and [I-E(t)]JZ and using the

fact that 2A(t) as a mapping from [I=-U(t)]X wento E(t)Z has a

:? bounded inverse (this is the method of Liapunov-Schmidt), there cxist %

‘ ; . 2 T I8
AO >0, § >0 and a unique function y* € Cc (R x {|A]| < AO},

(I-U(t))X), vy (t,0) = 0 for all ¢t, such that Eauation (3.2) has a

solution for & € R, 1yl = &, &} < %, if and oaly if y = ¥*{t,2)

. 0

¥ and (t,)A) satisfies the bifurcation equation

1 0 = F(t,) 98F (1-E(£)) Mp(e) + y* (£, ), 0) - AlL)y* (£, )] (3.3)
If we define the scalar function £(t,A) by the relation

| pieay =F s s dare) (3.4)

e

then the bifurcation equation is equivalent to the scalar equation ¥
£iEuny =10 (3.5)

Sl S, 1t feollows that

for t €R, [A] <« Ao+ Since v™(t,0)

12 o)) PR L0 0 s SR 28 &)

Relation (3.6) reflects the fact that Equation (l1.2) does not have an
isolated solution. Eaquality (3.6) is the basic reason why this
problem differs from the usual bifurcation problem.

1€ Ae R A= iy AT R%, then

;.é BE(E,0)/0h; = ay(t), § = 1,2 (3.7) :

:. | where cecach aj, j = 1,2, is defined in Eguation (2.1). The function £

|

| can thus be written as

2 Eit X} = atkl=A + Bt 2) ?
where h(t,0) = 0, 3h(t,0)/3X = 0. For any A # 0, solving Equation f

b | (3.5) is equivalent to solving the equation f

7 ?

5 a(t) s (A/|A]) + h(t,A)/[A] = 0. (3.8) ,

y
2
E If A/|x] = B, H(t,B,[X])} = h(t,B|A])/|A], then B € sl = (8 er’: [
‘?‘ |8] = 1} and H is c? in its arguments. The discussion of the

solutions of Equation (3.8) becomes equivalent to the discussion ot

the equation

T TSR,

k. def
k| G(trels) = G(t)'B 4 Hit,B8,8) .= 0 (3-9)




&6
RSN Ly SN

(HZ) The vector a'(t) E:Rz is orthogonal to Nlee(t)) at most
at a finite number of points {tk, emES Ui e s DR Rt
k . < e
gt B s not orthogeonaltte OMﬂ(tL)) for any. k= 1,2,«...0.
.(H3) The lines through the origin and a(tj) and u(tk) are not

and none on the other. This curve in A=-space is a bifurcation curve

. i : :
for t €[0,Y), B &€ 8, s small and nonnegative, In the following,

we always understand § € Sl even Lthough it may not be said explicitly.
. = + Q — g 1 - &0 -
115 a(to) GO 0, then G(to'“n'o) e L (LO) 6 # 0, then
BG(tO,BO,O)/at # 0 and the Implicit Function Theorem implies there is

an 8. = so(tO,BO) > 0 and a unique solution t*(B,s) of Equation

(3.9)Ofor |8-85 < sy 0 2 5 < 54, t*(GO,O) = B

To complete the proof, we need to reformulate Hypotheses (Hz),(H3)
in an equivalent form. The vector «a(t) defines a continuous lincar
functional on Rz by the relatiom al(t)-Xx, A & Rz. If the null space
of a(t) is denoted by Nlo. (£) ), Ehen (ﬂz(t),—ﬂl(t)) s a basis
for NMa(t)). By computing ¢',9d", one casily obscrves that (nz),(n3)

are equivalent to

coliinear for. itz e ik s=aile ot sl n

k 3
The numbers t here are the same as before.

1 . = = £ i q e [ .
e (to) BO 0, then Hypothesis (HZ) implies «a (LO) 30 £ 0.

Thus, the Implicit Function Theorem implics there is an Sy =

so(to,ﬁo) > 0 - and a Eunction t*(B,s), t*(uO,O) = to, such that

SOE {B,8)Y,B,8) /3t = 0

for [8—80[ < SO' DR SR Sy and t*(B,s) is uniaue in the region
It"‘t d(.‘:

;o ’ i = * 10 :
OI < sy. Thus, the function @(8,s) =" G(t (B,s),B,8) is a
maximum or minimum of G(t,R,s) with respect to t at (B,s). A few

elementary calculation show that Q(8,,0) = 0, 3Q(ﬁ0,0)/3ﬁ = u(to).

Therefore, the derivative of Q(B,s) with respect to B on the sphere i

1 . . 5 :
S at B = BO’ 8 = (. is tlie inner product ©f the vector a(to) with

a unit vector orthogonal to BO' But this Vector will be & honzcro
constant times a(to) since a(to) # 0 by Hypothesis (Hl). Conse-
guently, Q(BO,O)/Bs oOn S is nonzero. The lmplicitvFunction Theorem
implies there is a 6(60) > 0 and a function B8%(s) € Sl, 3*(0) = 8o
such that Q(8%(s),s) = 0 for 0 ¢ s < &8(8,) describes a curve.

On one side of this curve, there are two simple solutions of Ecuation
(3.9) and no solutions on the other side. In terms of the original co-
ordinates (xl,xz), this implies there are two solutions of Equation

(3.5) near t, on one side of the curve X = sB*(s), 0 < 5 < §(B)
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and is tangent to the line u(to)- =0 'at "X = ). 7The fact that the
* " " number of solutions increases or d::reases as stated in the theorem is
clear.

The above analysis can be applied to cach of the points tj in
Hypothesis (HZ) to obtain an s, > 0 such that all solutions of
Equation (3.9) for |t-tJ| < sgr B € Sl, 0 2s < s,
the argument above. We obtain the bifurcation curves as well. The

arc determined by

complement of the intervals |t-tJ| « sgr 3 = 1,2,...,n, in [0,1) is
! . = - g 1 v - of =
compact and «a (tO) Bo # 0 for any tor Py satisfying a(LO) 2 0.
A repeated application of the Implicit Function Thcorem shows one can
choose s so that ne Hurther ‘bifurcations 'occur in this complement

0 1

for any g e o g ey Returning to the original coordinates

0°
(Al,AZ), we see that the complete bifurcation diagram has been obtained
for a full neighborhood of A = 0.

To describe precisely the bifurcation pattern as stated in Theorem
2.1, we need to know that no two bifurcation curves obtained by the
above process coincide. This 1is the only recason llypothesis (H3) is
imposed. This proves the first part of Theorem 2.1.

The last part of the theorem is clear from the definitions of the
terms involved. This completes the proof of Theorem 2.1.

To prove Theorem 2.2, we first note that the method of Liapunov-
Schmidt implies there is a e 2 0 and a continuous function t(1) C

0L (O Ty such: that the solution x(t)] is gaven by
x{t) = pleiey] 2 ptielaldicily @ < 1 < 15

where y*(t,A) is the solution of Equation (3.2), (t(t),A (7)) satisfy

Equation (3.5) or, equivalently, Equation (3.8). Suppose there is a

sequence Tj + 0 such that cot—l(Al(Tj)/ko(rj)) * dq € [0,2n] as

j + », or, equivalently, A(rj>/lk(rj)l s R R R Without
loss of generality, we may assume t(Tj) e t;0 () o0 B AR - G S -

Then x(rj) -+ p(to), a(to)-uo = 0, ¢(t0) = $y. Since all functions are
continuous, the conclusion of Theorem 2.2 follows immediately, and the

proof is complete.

To prove Corollary 2.1, supposec the conditions of Theorem 2.4 axe
satisfied and the interval [¢m(Y),¢“(Y)J consists of more than one
point, then x(t) cannot have a limit as t - 0 although every limit
point satisfies Equation (1.2). If x(r) has a limit as 7t + 0, then
Sly) 1is precompact and it is, therefore, necessary that
cot-l(Al(r)/rz(r)) approach a limit as Tt - 0. Conversely, if
cot-l(Al(r)/Az(r)) * o 88 T 0, then X(t)/]jxlz}| = Bo €st as
{1 A and a(t(r))-ﬁo + 0 as T + 0 from the argument used in the
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proof of Theorem 2.2. Iliypothesis wl,) implies the set of ¢ & [0,1])

such that a(t)-[%0 =0 18 dsolated.  Since L{T) 16 continuous for

0 <t <1, this implies t(1) -~ £y EdES, K =1,2,...m) as t + 0.
The argument used in the proof of Theorem 2.2 impliecs x(t) - p(to)

as t » @ and the proof of Corollary 2.1 is complete.
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then the existence of more than one solution in a neighborhood of
zero can be proved by making assumptions only about M(0,0)/3x
and M(0,0)/3x3\A. However, if dim A > 2, then the problem is
much more difficult and more detailed information is needed

about the function M. A careful examination of the existing
literature for dim A > 2 reveals that the additional con-
ditions imposed ca M imply, in particular, that the solution

x = 0 of the egquation

M(x,0) =0 . (1.2)

is isolated (see, for example, the papers on catastrophe theory).
These hypotheses eliminate the possibility that Equation (1.2)
has a family of solutions containing x = 0. Such a situation
occurs, for example, for M(x,A) = Ax + N(x,)A), where A is lineér
with a nontrivial null space and N(x,0) = 0 for all x. There
also are interesting applications where Equation (l1.2) is nonlinear
and there exists a family of solutions. For example, Equation (1.2)
could be an autonomous ordinary differential equation with a
nonconstant periodic orbit of period 2l with the family of
solutions being obtained by a phase shift. When the differential
equation in the latter situation is a Hamiltonian system, the
parameters (Al,xz) could correspond to a small damping term and
a small forcing term of period 2. To the authors knowledge, the
first complete investigations of special problems of each of these
latter types are contained in paper§ by Hale, T&boas and Rodrigues.
It is the purpose of this paper to begin the investigation of
the abstract problem for Equation (l.1l), especially to extend the
results in the paper by Hale and T&boas.




